The Dravet Prediction tool: predicting patient’s phenotypic outcome by combined modeling of SCN1A genetic effects with clinical features.

Eduardo Pérez-Palma, Andreas Brunklaus, Ismael Ghanty, Stephanie Schorge, Ji Xinge, Joseph Symonds, Renzo Guerri, Rima Nabbout, Ingrid Scheffer, Michael Kattan, Dennis Lai, Sameer M Zuberi

1Universidad del Desarrollo, Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Santiago, Chile. 2The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow. UK. 3School of Medicine, University of Glasgow, Glasgow. UK. 4Department of pharmacology, School of Pharmacy, University College London, London. UK. 5Department of Quantitative Health Sciences, Cleveland Clinic, USA. 6Pediatric Neurology Unit, Children’s Hospital A. Meyer-University of Florence. Italy. 7Paris Descartes University, Department of Pediatrics, Hôpital Necker-Enfants Malades, Paris. France. 8University of Melbourne, Melbourne, Australia. 9Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA. 10Stanley Center for Psychiatric Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.

*Presenting author: eperezpalma@gmail.com

Background: Mutations in the voltage-gated sodium channel gene (SCN1A) are associated with a spectrum of epileptic phenotypes, ranging from ‘milder’ forms such as genetic epilepsy with febrile seizures plus (GEFS+) to the ‘severe’ Dravet syndrome (DS) with 30% mortality. With limited performance seizure onset is commonly used as an informal predictor. Currently, there is no systematic predictor for SCN1A trajectories and early diagnosis of DS improves prognosis. To date, systematic analysis of genetic variants effects in addition to seizure onset have not been formally addressed.

Methods and Results: Collaborations partners from all around the world help us build the largest set of genetic and clinical data for SCN1A patients. A total of 745 SCN1A mutation-positive DS (n = 616) and GEFS+ (n=129) patients were included in the analysis. We generated a SCN1A-specific genetic score by combining paralog conservation of the affected amino acids with the physicochemical properties of the exchange observed. Next, we trained a generalized linear model using SCN1A genetic score and seizure onset as predictors of DS and GEFS+. The SCN1A genetic score was positively associated with DS outcome (p-value=4.88x10^-27) while seizure onset had a negative significant effect (p-value=3.69x10^-36). Taken together the model was effectively able to separate both outcomes (AUC=0.89). We used an additional blind cohort of 277 cases (209 DS and 68 GEFS+) to validate the model. A total of 207 DS cases were correctly predicted, achieving a 90.06% accuracy. We deployed the model into an online tool designed to evaluate any given SCN1A patient. The Dravet prediction tool will calculate patient’s probability (%) of developing milder GEFS+ or severe DS.

Conclusion: The Dravet prediction tool effectively combines clinical and genetic data to predict the phenotypic spectrum of SCN1A variants. Broad collaboration coupled with cost effective computational methods allows the development of novel models with direct clinical applications. Our results can be accessed by doctors from all around the world who can further characterize the expected outcome of SCN1A patients and begin treatment.

Conflict of interest disclosure: The authors declare no potential conflicts of interest, whether scientific, financial and personal.

Keywords: Dravet syndrome, SCN1A, GEFS+, clinical genetics, Neurodevelopmental disorders.