Vision for success:

A global platform for translational research (cohort to bedside and cohort to bench), informing biological/genetic basis for disease and impact on clinical care and population health
1. Creating a standardized database and registry—pros, cons, how best to do it

- Start with cohort-level metadata, work toward unified database of individual-level data
- Leverage existing metadata collections, automate as possible
 - NCI Cohort Consortium, UK Dementia Platform
- Tiered structure: each contributes at level of comfort, queryable
 - 0: Cohort website
 - 1: Cohort description (like program book), mechanisms for access
 - 2: Data description (demographics, data collection instruments, omic data)
 - 3: Counts of phenotypes, sample types, update
 - 4: Individual-level data
1- Creating a standardized database and registry—pros, cons, how best to do it

• Funding and infrastructure needed for fielding queries, depositing data, companies may have solutions but should not hold the data
• Projects that could be facilitated: build reproducibility network
• Address data security with cloud solutions
• Need to understand country-specific regulations on use of servers and data produced from them

• Create scalable, transportable systems for extracting follow-up information, outcomes
• Develop repository of SOPs for sample collection and storage, assays and protocols, assessments of validity/quality, analytical methods
2-IT considerations for enabling coordination, communication, centralization

- Need to define cohorts, what data stored and used
- Federation vs centralization
 - Centralizing reduces duplication, more sustainable funding
 - Federated addresses jurisdictional restrictions, sheer size, sustainability of smaller portals in question
 - **Did we agree on this?**
- Pharma works this way, most cohorts do not
- Standard interfaces needed, some extant examples
- Interoperable analysis a goal of GA4GH workstream
- Authorization and access: once fully authorized get expedited access
- Operationalizing consent—funding to harmonize and standardize consent, ensure access c/w consent
2-IT considerations for enabling coordination, communication, centralization

• Discoverability: searchable databases, GA4GH
• Develop *Data Use Ontology* to tag datasets with use restrictions
• Specifying hypotheses not always possible, enable exploration and pattern identification through hypothesis-free machine learning
• Challenge of legacy data
• Measuring impact
• Opportunity to negotiate with cloud vendors

Highest priority:
• Work with Group 1 to get accurate registry
• Select data standard
3-Scientific agenda with short- and long-term goals

• Enhancements to existing cohorts:
 • Collect new samples for repeated measures or novel assays
 • Population-specific genotyping arrays
 • Standardize novel assay types: prioritize/choose
 • Support cohort-wide genotyping and other –omic assays
 Did we agree on this?

• Standardized phenotyping approaches esp with EHRs
• Novel environmental measures and mobile technologies not possible through EHR linkage: prioritize/choose
• Generic data visualization methods
3-Scientific agenda with short- and long-term goals

- Scientific questions
 - Good examples in past, almost always require close collaboration and independent support
- Determinants of health
- Rare conditions or subgroups
- Harmonize/standardize only what really matters—novel -omic assays
- Develop systems for long-term health outcomes in LMIC
- Facilitate research access to health outcome data, data protections

Will require engagement of funds with governments to convince relevance of research to health care
4-Policy agenda to facilitate and optimize impact of assembling these cohorts

• Challenges:
 • Defining “what’s in it” for... investigators, cohorts, countries
 • Differing institutional interpretations of regulations
 • Sharing samples more difficult vs. data/metadata
 • Differing approved uses by cohorts
 • Including native/aboriginal communities
 • Including for-profit entities

• Needs/Benefits: combine scientific and policy discussions
 • Define what collaboration trying to do, high-level principles
 • Develop/adopt international principles, build on GA4GH
 • Develop protocol for project review—selection and participation
 • Resource/platform to share lessons learned
4-Policy agenda to facilitate and optimize impact of assembling these cohorts

• Pilot efforts
 • Governance description
 • Cohort policy “traits” added to metadata
 • Identify current collaborations, what’s worked, lessons learned
• Understand implications of GDPR

 Engage primary funders for shared benefit and power

• Potential for common consent, at least for given project
• Develop pre-competitive spaces for industry to interact with cohorts
• Use policy frameworks for responsible sharing, obtaining consent, ensuring privacy—All of Us and GA4GH
• Develop international strategic agenda for CoC coordination
5-Developing a collaborative genomic sequencing (and other -omics?) strategy

• Key questions only through large-scale collaborations
 • Genomic and exposure diversity, migrant studies
 • Rare diseases: human knock-out and homozygous deletions
 • Drug repurposing opportunities
 • Global problems: obesity, toxic exposures, alcohol-related diseases
 • Microbiome across ethnicities and exposures
• Very large projects will drive down costs
• Centralized coordinating function enabling queries to identify most informative cohorts for specific question
Developing a collaborative genomic sequencing (and other -omics?) strategy

- Types of data of most value
 - WGS, to be shared, WES not enthusiastic
 - Leveraging existing GWAS data and SNP-array genotyping ($50-100M)
 - Would need cohort-specific sequencing (few hundred?)
 - Phenotyping data (no sharing issues?) and metabolomic data

- Design collaborative sequencing strategy
 - Leverage existing GA4GH efforts at standardization, reduce artifacts
 - LMIC need funding, level playing field

- Methods/tools
 - Imputed SNP arrays rather than exomes (too much variability)
 - WGS data file harmonization (TOPMed > 100K)
 - May need charter or principles
5-Developing a collaborative genomic sequencing (and other -omics?) strategy

- Conceptualize as agnostic platform vs. science-driven questions
- Choose handful of grand challenges: genomic variation (knock-outs) and exposure variation (alcohol)
- Genomics is easy: same in all cell types, stable
- Many complexities of proteomic data: population validation, interpretation, biologic variation
- Need close partnerships with developers of assays, can work iteratively to improve them
 - *How to decide when assay ready for millions?*
- Large numbers reference samples in key subgroups (elderly?)
6-Translation and clinical impact

• Opportunities:
 • Advance practice—dx/px/rx; Mendelian, PGx, genetic risk scores
 • Drug development
 • Generic: health literacy, exemplars for teaching, evidence generation using large simple trials, learning healthcare systems
 • Population health and policy: new knowledge moves to policy

• Barriers:
 • Variable healthcare systems, disparities, diversity, evidence
 • Hand-off from evidence to implementation
 • Regulatory, reimbursement, ethics, “academic territorialism”
 • Engaging industry (real and perceived)
6-Translation and clinical impact

- Exemplar projects
 - Standardize implementation of RoR: FH or cancer
 - Country/cohort-specific risk prediction with standardized methods
 - GRS and non-genetic risk factors across ancestries

- Provide continuously updated estimates of individual risk and health behaviors of neighborhoods and populations
 - Mexico City Cohort: Poor glycemic control identified as likely cause of high mortality from renal disease and other causes, leading to a rapid public health intervention in Mexico

- Integration of personal, clinical, biological information
Compelling scientific questions addressable with millions of individuals

- Rare conditions (CKB venomous snakebite), subgroups, exposures
- Rare genotypes: human knock-outs project, extremes of risk
- Consanguinity and founder population studies: for collaborations?
- Critical bottlenecks: drive technology development
- Pilot studies:
 - Utilize repository of e-phenotyping algorithms (PheKB) and test transportability across different countries’ EHRs
 - Apply NLP to cohort studies’ data collection instruments (or consents?) to extract data just as doing with EHRs
 - Identify high-risk individuals for early disease detection, recognize when undetected disease biasing early outcomes
Funding needs

- Register and deposit data
- Review country-specific data access policies and ensure compliance
- Harmonize consents, re-consent
- Scalable phenotyping of outcomes: ascertainment (suspected cases), confirmation (case-ness), classification (subtypes, details)
- Collaborative analyses
- Adding value to existing cohorts—cohort wide assays, novel methods
- Patience: invest for long term, avoid pushing for quick publications
- Sequencing/genotyping support in LMIC to level playing field
- Support for open-source data platforms, analysis environments, data deposition
Possible outcomes from this meeting

- Creation of a searchable registry to facilitate collaboration across the cohorts—initially “members” vs broader global scientific community?
- Foundational principles for creating consortium of cohorts (CofC) and agreement to further explore creating it
- Identification of potential key work streams to create a foundation for a possible CofC
- Organizational entity to support exploratory activities—likely G2MC and GA4GH partnership
- Outreach to cohorts not in attendance
- White paper of opportunities and challenges
- Follow-up working groups, second summit
Translation and clinical impact

Almost all
2-IT considerations for enabling coordination, communication, centralization

- Rory: bring researchers to data, convert images and other tech to data, provide creative and informative visualization, make possible to use and understand data
- Josh: cloud solutions, data biosphere
- Cathy: major potential output could be pilot of comparing and validating phenotype algorithm performance internationally
 - Not only disease outcomes but risk exposures, treatment
 - Some common data models have been used internationally
Improve prospects for interoperability and compatibility of instruments, data formats, phenotypic and clinical measures, etc.

- Almost all
Promote data sharing and open access policies

• Rory: convert samples to data, whole cohort assays, industry support
Broaden international cooperation through existing tools and resources

- Rory: create scalable, transportable systems for extracting follow-up information, outcomes
- Geoff: repository of SOPs for sample collection and storage, assays and protocols, assessments of validity/quality, analytical methods
Explore the feasibility of a "digital" platform, or web-based, evolving registry of large-scale cohorts, in searchable format

- Almost all
Examine the potential for a collaborative sequencing (and other -omics?) strategy

• Rory: find ways to get samples from those who don’t have them?
Consider strategies for translating findings for health impact

• Almost all
Advance a collective vision: where do we want to be in ten years?

• Almost all