Implementing Pharmacogenomics in Europe: Design and Implementation Strategy of the Ubiquitous Pharmacogenomics Consortium

Jesse J. Swen, PharmD PhD
Associate Professor of Pharmacogenetics
Section Chair Laboratory
Dept. of Clinical Pharmacy & Toxicology
Implementing Pharmacogenomics

- Evidence for preemptive PGx for **single drug-gene pairs** [1-5]
- DPWG guidelines for 84 gene-drug pairs [7]
- 95% of patients have at least 1 actionable genotype [8]

Evidence supporting a preemptive panel approach is currently undetermined

1. NEJM 2008;358:569-79
2. NEJM 2013;369:2304-12
3. NEJM 2013;369:2294# 303
4. Lancet 2015
5. Coenen , Gastroenterology 2015
6. Ehmann, Pharmacogenomics J. 2015
7. Swen, CPT 2011
U-PGx Consortium: Generating Evidence to Support PGx

Objective: to quantify the collective clinical utility of a panel of PGx-markers

1. Systematic implementation of preemptive PGx strategy across multiple drugs/genes/ethnicities/healthcare systems

2. Robust assessment of how this intervention impacts:
 • Patient care (individual + population level)
 • Healthcare service processes
 • Cost-effectiveness
Scientific Advisory Board

MARK J. RATAIN
U. of Chicago, USA

RUSS ALTMAN
Stanford University, Stanford, CA, USA

DAN RODEN
Vanderbilt University School of Medicine, Nashville, TN, USA

MARY RELLING
St Jude Children’s Research hospital, Memphis, TN, USA

MICHEL EICHELBAUM
Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, DE

DAVID H.U. HAERRY
Patient and Consumer Working Party of the European Medicines Agency (EMA), Bern, Switzerland
Ubiquitous Pharmacogenomics

- Funded by EU Horizon 2020 (€15 million)
- Start 1-1-2016
- 5 year project
- Implement preemptive PGx testing in a real world setting across 7 European sites
 - Using the DPWG guidelines to guide drug and dose selection
Objective:
To quantify the collective clinical utility of a panel of PGx-markers covering 13 important pharmacogenes as a new model of personalized medicine.

Hypothesis:
Implementation will result in a 30% reduction of clinically relevant adverse drug reactions (4 → 2.8%).

Design:
Open randomized cross-over study in 7 countries including 8,100 patients.

Outcomes:
Primary: Clinical outcome
Secondary: Process indicators for implementation
Cost-effectiveness
PGx Guided Prescribing Arm

1st Rx
PGx drug

DNA sample

Record in EMR

PGx informed prescribing

Safety code card provided

 Drugs of inclusion (n=42)

<table>
<thead>
<tr>
<th>Antidysrhythmic</th>
<th>Antiepileptic</th>
<th>Anesthetic</th>
<th>Anti-infective</th>
<th>Anti-inflammatory</th>
<th>Antineoplastic</th>
<th>Antineoplastic (TCA)</th>
<th>Antipsychotic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antiarrhythmic</td>
<td>Anxiolytic</td>
<td>Antihistaminergic</td>
<td>Anti-infective</td>
<td>Anti-inflammatory</td>
<td>Antineoplastic</td>
<td>Antineoplastic</td>
<td>Antipsychotic</td>
</tr>
</tbody>
</table>

1. PPIs excluded because they are only associated with a difference in efficacy among aberrant genotypes.
2. Estrogen containing drugs will only be included in the study as a subsequent prescription.

T=2, 4, 8, 12 weeks

DPWG guidelines
Component 3: A next step into the Future

Leader: Prof. Dr. Matthias Schwab

- **Follow-up study among extreme phenotypes:**
 - Next Generation Sequencing
 - To identify rare variants
 - Blood sample within 24 hours of serious ADR
 - Blood plasma levels of drugs

- **Pharmacokinetic sub-study:**
 - Integrate Gene-Drug and Drug-Drug interactions
 - Apply a systems pharmacology approach
 - Dried blood spot at various time points combined with clinical endpoint data; metoprolol, CAP / 5-FU, atorvastatin, simvastatin, voriconazole

Rare variants among CYPs

[Graph showing fraction of functional variability for different CYPs]

Ingelman-Sundberg, Genetics in Medicine 2016

Wist Genome Medicine 2009;1:11
Update April 2017

• ICT tool developed → Med Safety Code Card
• PGx genotyping platform selected → LGC SNPLine
• PGx panel selected → 13 pharmacogenes; 50 variants; incl. genotype-phenotype translation
• Guidelines translated → English and local languages; validated
• Training and education materials developed
 – Promotional video (www.upgx.eu)
 – eLearnings for participants (nurses, pharmacists, clinicians)
• First U-PGx Pharmacogenomics Day Granada; 2nd in Vienna 12 May
• eCRF: ProMISe
• Study protocol: IRB approval all sites, recruitment started; n=69
Take home message

• U-PGx will quantify collective clinical utility of a panel of PGx-markers

• U-PGx is unique in its multi-center, multi-gene, multi-drug, multi-ethnic, and multi-healthcare system approach

• U-PGx will deliver a large dataset combining detailed phenotypes of adverse drug reactions and individuals’ genetic makeup

• U-PGx is open for collaboration to expand understanding of PGx
Thank you for your attention!

U-PGx Kick-off Leiden Jan 19th, 2016

www.upgx.eu
Email: j.j.swen@lumc.nl

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 668353